Complex graph neural networks for medication interaction verification
نویسندگان
چکیده
This paper presents the development and application of graph neural networks to verify drug interactions, consisting drug-protein networks. For this, DrugBank databases were used, creating four complex interactions: target proteins, transport carrier enzymes. The Louvain Girvan-Newman community detection algorithms used establish communities validate interactions between them. Positive results obtained when checking two sets drugs for disease treatments: diabetes anxiety; antibiotics. There found 371 by algorithm 58 via Louvain.
منابع مشابه
Graph distance for complex networks
Networks are widely used as a tool for describing diverse real complex systems and have been successfully applied to many fields. The distance between networks is one of the most fundamental concepts for properly classifying real networks, detecting temporal changes in network structures, and effectively predicting their temporal evolution. However, this distance has rarely been discussed in th...
متن کاملCayleyNets: Graph Convolutional Neural Networks with Complex Rational Spectral Filters
The rise of graph-structured data such as social networks, regulatory networks, citation graphs, and functional brain networks, in combination with resounding success of deep learning in various applications, has brought the interest in generalizing deep learning models to non-Euclidean domains. In this paper, we introduce a new spectral domain convolutional architecture for deep learning on gr...
متن کاملVerification of Binarized Neural Networks
We study the problem of formal verification of Binarized Neural Networks (BNN), which have recently been proposed as a energyefficient alternative to traditional learning networks. The verification of BNNs, using the reduction to hardware verification, can be even more scalable by factoring computations among neurons within the same layer. By proving the NP-hardness of finding optimal factoring...
متن کاملMIMO Graph Filters for Convolutional Neural Networks
Superior performance and ease of implementation have fostered the adoption of Convolutional Neural Networks (CNNs) for a wide array of inference and reconstruction tasks. CNNs implement three basic blocks: convolution, pooling and pointwise nonlinearity. Since the two first operations are welldefined only on regular-structured data such as audio or images, application of CNNs to contemporary da...
متن کاملGraph Priors for Deep Neural Networks
In this work we explore how gene-gene interaction graphs can be used as a prior for the representation of a model to construct features based on known interactions between genes. Most existing machine learning work on graphs focuses on building models when data is confined to a graph structure. In this work we focus on using the information from a graph to build better representations in our mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Intelligent and Fuzzy Systems
سال: 2023
ISSN: ['1875-8967', '1064-1246']
DOI: https://doi.org/10.3233/jifs-223656